Технологии

Загадка странных металлов решена: открытие физиков может изменить использование энергии

Published

on

Физики уже давно изучают так называемые странные металлы — материалы, поведение которых не подчиняется привычным законам электричества и магнетизма. В отличие от таких обычных металлов, как медь или золото, которые проводят электричество предсказуемым образом, странные металлы демонстрируют аномальное поведение, особенно при очень низких температурах. Недавний научный прорыв позволил ученым лучше понять эти загадочные материалы, что может привести к значительному повышению эффективности передачи электроэнергии.

Об этом сообщает Interesting Engineering, ссылаясь на исследование, опубликованное в журнале Nature Communications.

Загадка странных металлов

Обычные металлы проводят электричество благодаря свободному движению электронов, следуя хорошо изученным физическим принципам. Однако в случае странных металлов наблюдается необычное электрическое сопротивление, что делает их объектом пристального изучения физиков.

Понимание свойств этих материалов может открыть новые перспективы для создания сверхпроводников, которые способны передавать электричество без сопротивления и потерь энергии. В новом исследовании ученые применили математический метод из квантовой метрологии — так называемую квантовую информацию Фишера, которая позволяет анализировать взаимодействия между электронами в экстремальных условиях.

Квантовая запутанность и эффект Кондо

Результаты показали, что странные металлы обладают уникальным паттерном квантовой запутанности. В критических точках фазового перехода электроны в этих материалах становятся сильно взаимосвязанными.

Для исследования странных металлов ученые также использовали теоретическую модель, известную как эффект Кондо. Она описывает, как магнитные моменты взаимодействуют с электронами, что в определенных условиях приводит к исчезновению квазичастиц — фундаментальных строительных блоков электрического поведения. Это исчезновение связано с резким усилением квантовой запутанности, когда электроны оказываются в чрезвычайно сильной взаимосвязи.

Практическое значение открытия

Физики применили интеграцию квантовой информатики с физикой конденсированного состояния, что позволило выявить ранее неизвестные квантовые связи. Исследование подтверждает, что квантовая запутанность играет ключевую роль в поведении странных металлов.

Эти материалы имеют прямую связь с высокотемпературными сверхпроводниками, которые могут значительно повысить эффективность передачи электроэнергии. Если ученым удастся использовать свойства странных металлов на практике, можно будет разработать новые технологии, значительно сокращающие потери энергии в электросетях.

Благодаря этому открытию физики приблизились к будущему, в котором электроэнергия будет передаваться с минимальными потерями, что может привести к революции в энергетической отрасли.

Источник: Interesting Engineering

Leave a Reply

Your email address will not be published. Required fields are marked *

В тренде

Exit mobile version