Connect with us

Технологии

Сэкономит миллиарды: новое изобретение предотвратит катастрофу с солнечными панелями

Published

on

Производство солнечных панелей под угрозой из-за дефицита сырья, однако ученые уже нашли способ снизить потребление серебра.

Группа ученых из Великобритании разработала инновационную конструкцию для солнечных панелей, направленную на предотвращение потенциальной катастрофы в солнечной энергетике, вызванной растущим количеством солнечных электростанций. Речь идет о новой конструкции контактов, созданной с использованием метода трафаретной печати, которая позволяет значительно снизить потребление серебра, сохраняя высокую эффективность солнечных элементов с туннельно-оксидными пассивированными контактами (TOPCon). Исследование, опубликованное в журнале PV Australia, утверждает, что это изобретение поможет ускорить установку солнечных батарей по всему миру.

Одной из ключевых особенностей нового проекта является значительное сокращение использования серебра в солнечных панелях. Согласно расчетам ученых, с помощью новой конструкции содержание серебра в TOPCon можно снизить с 12–15 мг/Вт до всего 2 мг/Вт. Это позволит сохранить потребление серебра в солнечной энергетике на уровне, составляющем менее 20% от мирового предложения, что особенно важно при масштабировании фотоэлектрических систем.

Во время исследований в Университете Нового Южного Уэльса эффективность солнечных ячеек, созданных по новой технологии, составила 24,04%. Китайские партнеры смогли добиться еще больших показателей на своих предприятиях, где эффективность панелей достигла 26,7%.

Солнечная ячейка Университета Нового Южного Уэльса

Бретт Халлам, доцент Школы фотоэлектрической и возобновляемой энергетики Университета Нового Южного Уэльса, подчеркивает, что многие в отрасли не задумываются о будущем солнечной энергетики. В своей статье 2021 года он опроверг утверждения, что солнечные панели, изготовленные по технологии пассивированного эмиттера с тыльным контактом (PERC), вскоре будут заменены более эффективными. Халлам уверен, что ресурсы, такие как серебро, висмут и индий, используемые для их производства, истощатся намного быстрее, чем предполагается, и мировых запасов индия, например, хватит лишь на производство 200 ГВт солнечных панелей.

Доктор Юйчао Чжан, один из авторов исследования, добавил, что вначале их работа была направлена на повышение эффективности солнечных ячеек. Однако позже ученые пришли к выводу, что проблема может быть связана с чрезмерным потреблением серебра. Они считают, что есть потенциал для снижения потребления серебра до 90%.

Снижение содержания серебра может вызвать проблемы с надежностью солнечных панелей, такие как поломки контактов или потеря электрического сопротивления. Однако новая технология обеспечила дополнительную проводимость, не уступая по эффективности традиционным конструкциям.

Ученый Мухаммед Адиль Зафар работает над солнечным элементом

Исследователи использовали серебряную пасту от китайского партнера проекта, компании Changzhou Fusion New Material Co. В статье отмечается, что использование обычных серебряных паст для формирования интерфейса металл/Si дает дополнительные преимущества, благодаря многолетним улучшениям и оптимизациям этих материалов.

Метод трафаретной печати оказался совместим с текущими производственными процессами и может работать как с панелями PERC, так и с TOPCon, без необходимости в новых дорогостоящих инструментах. В будущем ученые планируют исследовать возможность использования медных или алюминиевых паст, что, по их мнению, позволит существенно снизить стоимость производства.

Доктор Чжан отметил, что хотя на первых этапах замена серебра может привести к увеличению цен на новые пасты, в долгосрочной перспективе медные или алюминиевые пасты будут значительно дешевле серебряных. Это откроет возможность для крупных производителей солнечных панелей экономить значительные суммы — до 50 миллионов долларов в год для компаний, производящих от 10 до 20 ГВт электроэнергии в год.

Источник: PV Australia

Continue Reading
Advertisement

Технологии

Древняя чернота “захватила” 44 000 км² Сахары и видна из космоса: что породило эту тень

Published

on

Исследователи опубликовали потрясающее составное изображение, на котором показано вулканическое поле Харудж, расположенное в Сахаре, в центральной Ливии.

Это поле, покрытое древней окаменевшей лавой, выглядит как гигантская черная тень, испещренная золотыми пятнышками, благодаря солнечному свету, который отражается от песка, осевшего между трещинами в лаве.

Вулканическое поле Харудж охватывает около 44 000 квадратных километров и содержит более 150 потухших вулканов. Некоторые из этих вулканов образовались более 6 миллионов лет назад, а другие были созданы совсем недавно, всего несколько тысяч лет назад. Множество слоев лавы, нагроможденных в регионе, придают этому полю его уникальный внешний вид, с возвышающимися жерлами и конусами, некоторые из которых достигают высоты более 100 метров.

Фотография была сделана на вулканическом поле Тибести, также в Ливии
Фото: wikimedia

Для создания изображения исследователи использовали спутниковые снимки, которые были собраны за последние три года, а затем обработаны с помощью специальной компьютерной программы. Это позволило создать «пиксельную мозаику», исключая элементы, которые могли бы затемнять изображение, такие как облака или пыльные бури. На итоговом изображении яркие золотистые пятна от песка контрастируют с темным фоном из лавы.

Интересно, что вулканическое поле Харудж не расположено вблизи известных тектонических разломов, как большинство вулканов на Земле. Вместо этого, лаву в этом регионе поднял прилив горячего каменистого материала из мантии, который создал магматический резервуар под полем. Это привело к медленному выделению лавы из многочисленных жерл, подобно процессам, происходящим на гавайском вулкане Килауэа, а не к взрывным извержениям.

Некоторые ученые считают, что поле Харудж состоит из двух отдельных вулканических полей: Аль-Харудж-аль-Асвад на севере с более старой лавой и Аль-Харудж-аль-Абьяд на юге, образованным недавно. Однако на данный момент ученые не могут точно определить, где начинаются и заканчиваются эти два поля.

Источник: Live Science

Continue Reading

Технологии

На Марс за 45 дней: в NASA испытали топливо для ядерного ракетного двигателя

Published

on

Ядерный ракетный двигатель, использующий энергию деления атомов для создания тяги, может значительно ускорить путешествия в космос, включая миссии на Марс.

Такой двигатель позволяет космическому кораблю двигаться быстрее, поскольку основан на ядерном реакторе, который генерирует тепло для создания тяги. Новые исследования и успешные испытания топлива для такого реактора, проведенные в Центре космических полетов имени Маршалла, управляемом NASA, дали надежду на значительное сокращение времени полета на Марс.

С использованием современных химических ракетных двигателей путешествие на Марс занимает около 6 месяцев. За это время экипаж сталкивается с многочисленными трудностями: необходимостью защиты от космической радиации, большими запасами воды и пищи, а также с 20-минутной задержкой связи, что усложняет взаимодействие с Землей. Чтобы уменьшить эти проблемы, разработка ядерных ракетных двигателей стремится значительно ускорить процесс.

Концепт космического корабля с ядерным ракетным двигателем
Фото: IFLS

Ядерный ракетный двигатель использует ядерный реактор, который создает тепло, проходящее через активную зону с жидким водородом. В процессе деления атомов урана выделяется тепло, которое превращает топливо в газ, создающий тягу через сопло двигателя. Эти исследования уже показали, что ядерный двигатель может сократить время полета на Марс до 45 дней, что значительно быстрее текущих методов.

Компания General Atomics Electromagnetic Systems совместно с NASA разработала новое топливо для таких реакторов и успешно испытала его. Топливо выдержало пик температуры 2327 градусов Цельсия, что подтверждает его способность работать в экстремальных космических условиях. Ожидается, что будущее топливо и ядерный ракетный двигатель будут в 2-3 раза более эффективными, чем современные химические двигатели, что позволит сократить полет на Марс до 2-3 месяцев, значительно улучшив условия для астронавтов.

Источник: IFLScience

Continue Reading

Технологии

Как ведет себя железо в недрах Земли: ученые воспроизвели процесс и раскрыли эту тайну

Published

on

Недавнее исследование, проведенное международной командой ученых, изучило поведение железа в экстремальных условиях давления и температуры, аналогичных тем, что присутствуют в недрах Земли.

Железо, являясь основным элементом внутреннего ядра нашей планеты, играет важную роль в геодинамике Земли. Определение температуры плавления и фазовой стабильности железа при таких условиях имеет ключевое значение для понимания структуры и термической истории Земли.

Команда исследователей, включающая ученых из Европейского центра синхротронного излучения в Гренобле и Политехнического института Парижа, использовала сверхбыструю рентгеновскую абсорбционную спектроскопию для анализа поведения железа при высоких температурах и давлениях, имитирующих условия, существующие в недрах Земли. Эти исследования помогли выяснить кривую плавления железа и структурные изменения, которые происходят в нем при экстремальных условиях.

Одной из важнейших целей работы ученых было исследование микроскопического поведения железа при давлениях, превышающих несколько мегабар, и температурах, достигающих тысяч градусов Кельвина. Полученные данные могут способствовать лучшему пониманию свойств ядра Земли, которое в основном состоит из железа, а также других элементов в меньших количествах.

Ударное событие в железе, вызванное лазером, на установке высокомощных лазеров (HPLF), где рентгеновская абсорбционная спектроскопия (XAS) использовалась для определения температуры плавления и микроскопической структуры железа при давлениях
Фото: European Synchrotron Radiation Facility

Результаты исследования могут помочь уточнить верхний предел температуры плавления железа на границе, разделяющей внутреннее и внешнее ядро Земли. Эта температура играет ключевую роль в геодинамических процессах и в процессе кристаллизации земного ядра. Также, исследование предполагает, что понимание этих процессов может помочь в изучении того, как образуется внутреннее ядро Земли.

Эксперимент был проведен с использованием лазеров высокой мощности, которые создали горячую плазму в образце железа, генерируя ударную волну, создающую экстремальные условия. Рентгеновские лучи синхронизировались таким образом, чтобы захватить спектр железа в момент прохождения ударной волны через образец, что позволило точно зафиксировать пиковые давление и температуру в железе.

Ученые установили, что при давлении 240 ГПа и температуре 5345 К, непосредственно перед плавлением, структура железа представляет собой гексагональную плотноупакованную (ГПУ) фазу, а не объемноцентрированную кубическую (ОЦК), как предсказывали многие теоретические исследования. Эти результаты оказывают важное влияние на дальнейшие исследования, уточняя теоретические модели и создавая новые ограничения для кривой плавления железа при экстремальных условиях.

Полученные данные могут существенно продвинуть наше понимание геодинамики Земли и помочь в изучении процессов, происходящих в ее недрах, а также в термической эволюции планеты.

Источник: PHYS.org

Continue Reading

В тренде